دانلود سيم پيچي ترانسفورماتور (docx) 14 صفحه
دسته بندی : تحقیق
نوع فایل : Word (.docx) ( قابل ویرایش و آماده پرینت )
تعداد صفحات: 14 صفحه
قسمتی از متن Word (.docx) :
دید کلی:
ترانسفورماتورها را با توجه به کاربرد و خصوصیات آنها به سه دسته کوچک متوسط و بزرگ دسته بندی کرد. ساختن ترانسفورماتورهای بزرگ و متوسط به دلیل مسایل حفاظتی و عایق بندی و امکانات موجود ، کار ساده ای نیست ولی ترانسفورماتورهای کوچک را می توان بررسی و یا ساخت. برای ساختن ترانسفورماتورهای کوچک ، اجزای آن مانند ورقه آهن ، سیم و قرقره را به سادگی می توان تهیه نمود.
اجزای تشکیل دهنده یک ترانسفورماتور به شرح زیر است؛
مقدمه
یک موتور الکتریکی ، الکتریسیته را به حرکت مکانیکی تبدیل میکند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام میشود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار میکنند، اما موتورهایی که بر اساس پدیدههای دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار میکنند، هم وجود دارند.
ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار میگیرد، نیرویی بر روی آن ماده از سوی میدان اعمال میشود. در یک موتور استوانهای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصلهای معین از محور روتور به روتور اعمال میشود، میگردد
هسته ترانسفورماتور:
هسته ترانسفورماتور متشکل از ورقه های نازک است که سطح آنها با توجه به قدرت ترانسفورماتور ها محاسبه می شود. برای کم کردن تلفات آهنی هسته ترانسفورماتور را نمی توان به طور یکپارچه ساخت. بلکه معمولا آنها را از ورقه های نازک فلزی که نسبت به یکدیگر عایقاند، می سازند. این ورقه ها از آهن بدون پسماند با آلیاژی از سیلیسیم (حداکثر 4.5 درصد) که دارای قابلیت هدایت الکتریکی و قابلیت هدایت مغناطیسی زیاد است ساخته می شوند.
در اثر زیاد شدن مقدار سیلیسیم ، ورقههای دینام شکننده می شود. برای عایق کردن ورقهای ترانسفورماتور ، قبلا از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانده می شود، استفاده می کردند اما امروزه بدین منظور در هنگام ساختن و نورد این ورقه ها یک لایه نازک اکسید فسفات یا سیلیکات به ضخامت 2 تا 20 میکرون به عنوان عایق در روی آنها می مالند و با آنها روی ورقه ها را می پوشانند. علاوه بر این ، از لاک مخصوص نیز برای عایق کردن یک طرف ورقه ها استفاده می شود. ورقه های ترانسفورماتور دارای یک لایه عایق هستند.
بنابراین ، در مواقع محاسبه سطح مقطع هسته باید سطح آهن خالص را منظور کرد. ورقههای ترانسفورماتورها را به ضخامت های 0.35 و 0.5 میلی متر و در اندازه های استاندارد می سازند. باید دقت کرد که سطح عایق شده ى ورقه های ترانسفورماتور همگی در یک جهت باشند (مثلا همه به طرف بالا) علاوه بر این تا حد امکان نباید در داخل قرقره فضای خالی باقی بماند. لازم به ذکر است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آنها نیز جلوگیری شود.
سیم پیچ ترانسفورماتور :
معمولا برای سیم پیچ اولیه و ثانویه ترانسفورماتور از هادی های مسی با عایق (روپوش) لاکی استفاده میکنند. اینها با سطح مقطع گرد و اندازههای استاندارد وجود دارند و با قطر مشخص میشوند. در ترانسفورماتورهای پرقدرت از هادیهای مسی که به صورت تسمه هستند استفاده میشوند و ابعاد این گونه هادیها نیز استاندارد است.
توضیح سیم پیچی ترانسفورماتور به این ترتیب است که سر سیم پیچها را به وسیله روکش عایقها از سوراخهای قرقره خارج کرد، تا بدین ترتیب سیم ها قطع (خصوصا در سیمهای نازک و لایههای اول) یا زخمی نشوند. علاوه بر این بهتر است رنگ روکشها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، را به راحتی بتوان سر هر سیم پیچ را مشخص کرد. بعد از اتمام سیم پیچی یا تعمیر سیم پیچهای ترانسفورماتور باید آنها را با ولتاژهای نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و سیم پیچ اولیه آزمایش کرد.
قرقره ترانسفورماتور:
برای حفاظ و نگهداری از سیم پیچهای ترانسفورماتور خصوصا در ترانسفورماتورهای کوچک باید از قرقره استفاده نمود. جنس قرقره باید از مواد عایق باشد قرقره معمولا از کاغذ عایق سخت ، فیبرهای استخوانی یا مواد ترموپلاستیک می سازند. قرقره هایی که از جنس ترموپلاستیک هستند معمولا یک تکه ساخته می شوند ولی برای ساختن قرقره های دیگر آنها را در چند قطعه ساخت و سپس بر روی همدگر سوار کرد. بر روی دیواره های قرقره باید سوراخ یا شکافی ایجاد کرد تا سر سیم پیچ از آنها خارج شوند.
اندازه قرقره باید با اندازه ى ورقههای ترانسفورماتور متناسب باشد و سیم پیچ نیز طوری بر روی آن پیچیده شود. که از لبه های قرقره مقداری پایین تر قرار گیرد تا هنگام جا زدن ورقههای ترانسفورماتور ، لایه ى رویی سیم پیچ صدمه نبیند. اندازه قرقره های ترانسفورماتورها نیز استاندارد شده است اما در تمام موارد ، با توجه به نیاز ، قرقره مناسب را می توان طراحی کرد.
اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده میشود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده میشود، اما این واژه عموماً به غلط بکار برده میشود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال میشود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد میشود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور میتوانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده میکنند.
انواع موتورهای الکتریکی
موتورهای DC
یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطهور بود، میشد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور میکرد، سیم حول آهنربا به گردش در میآمد و نشان میداد که جریان منجر به افزایش یک میدان مغناطیسی دایرهای اطراف سیم میشود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده میشود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده میشود.
موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.
سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل میشود. بدلیل اینکه این نوع از موتور میتواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده میکنند.
اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک میکند و هر چه که سرعت موتور بالاتر باشد، جاروبکها میبایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور میشود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد میکند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا میکنند. اتصال ناقص الکتریکی نیز تولید نویز الکتریکی در مدار متصل میکند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین میروند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک میرسیم.
موتورهای میدان سیم پیچی شده
آهنرباهای دائم در (استاتور) بیرونی یک موتور DC را میتوان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) میتوانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. میتوانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر ، جریان میدان را کمتر هم کنیم. این تکنیک برای ترکشن الکتریکی و بسیاری از کاربردهای مشابه آن ایدهآل است و کاربرد این تکنیک میتواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.
موتورهای یونیورسال
یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را میتوان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار میکنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل میشود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر میکند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.
مزیت این موتورها این است که میتوان تغذیه AC را روی موتورهایی که دارای مشخصههای نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد میشود و در نتیجه این موتورها به ندرت در صنایع مشاهده میشوند، اما عمومیترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده میشوند، هستند.
موتورهای AC
موتورهای AC تک فاز:
معمولترین موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکههای برقی ، اجاقهای ماکروویو و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار میرود. عموماً این موتورها میتوانند گشتاور راه اندازی بزرگتری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز ، ایجاد کنند.
هنگام راه اندازی ، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکتهای تحت فشار فنر روی کلید گریز از مرکز دوار ، به منبع برق متصل میشوند. خازن به افزایش گشتاور راه اندازی موتور کمک میکند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده ، دسته کنتاکتها فعال میشود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا میسازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل میکند.
موتورهای AC سه فاز:
برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده میشود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان ، استفاده میکنند. اغلب ، روتور شامل تعدادی هادیهای مسی است که در فولاد قرار داده شدهاند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان میکند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب میشود که موتور در جهت گردش میدان به حرکت در آید.
این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از فرکانس منبع تغذیه اعمالی به موتور ، بچرخد، چرا که در غیر این صورت میدان متعادل کنندههای در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها ، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال میشود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز ، به گردش در میآید. موتورهای سنکرون را میتوانیم به عنوان مولد جریان هم بکار برد.
سرعت موتور AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش ، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور ، گشتاور تولیدی موتور را تعیین میکند. تغییر سرعت در این نوع از موتورها را میتوان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر میکند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییر دادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم.
موتورهای پلهای
نوع دیگری از موتورهای الکتریکی موتور پلهای است، که در آن یک روتور درونی ، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهای خارجی که به صورت الکترونیکی روشن و خاموش میشوند، کنترل میشود. یک موتور پلهای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پلهای ساده توسط بخشی از یک سیستم دندهای در حالتهای موقعیتی معینی قرار میگیرند، اما موتورهای پلهای نسبتا کنترل شده ، میتوانند بسیار آرام بچرخند. موتورهای پلهای کنترل شده با کامپیوتر یکی از فرمهای سیستمهای تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان یار باشند.
موتورهای خطی
یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش ، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پلهای هستند. میتوانید یک موتور خطی را در یک قطار سریع السیر ماگلیو مشاهده کنید که در آن قطار روی زمین پرواز میکند.
ماشین جریان مستقیم یک وسیله تبدیل انرژی با کاربرد بسیار در صنعت است که توانایی تولید گشتاور و راهاندازی بالا و متغیر برای بارهای مورد استفاده را دارد. ماشینهای جریان مستقیم به دلیل استفاده از نیروی الکتریکی DC در خودروها، درصد زیادی از تولید ماشینهای الکتریکی را به خود تخصیص میدهند. همچنین این نوع ماشین در کاربردهای صنعتی که کنترل دقیق سرعت مورد نیاز است، استفادههای فراوان دارد.
کموتاسیون
برای تبدیل کمیت چرخان (گردش آرمیچر) به کمیت مستقیم (ولتاژ و جریان) و ساکن نگهداشتن نیروی محرکهٔ مغناطیسی آرمیچر به کموتاتور نیاز است. مهترین کار کموتاتور همان طور که گقته شد یکسوکردن کمیت متناوب در پیچک آرمیچر به کمیت مستقیم در جاروبکهای یک ژنراتور میباشد. ئاالذرالزذ
نیروی محرکهٔ تولید شده در آرمیچر
ولتاژ یکسوشده به وسیلهٔ جمعکردن عرض موجهای تولیدشده از پیچکهای سری به وجود میآید. هرچه تعداد پیچکهای سری افزایش یابد مقدار ولتاژ DC افزایش و تضاریس موج کاهش مییابد، اما به طور کلی شکل موج ولتاژ یکسوشده توسط جاروبک نمیتواند به شکل موج ولتاژ مستقیم تولیدشده از یک باتری برسد.
میانگین ولتاژ تولیدشده در یک پیچک با تعداد دور NC از رابطهٔ زیر به دست میآید:
EC = 2NCpnφ
که در آن p تعداد قطب، φ شار عبوری و n سرعت چرخش روتور است.
اگر C را تعداد کل پیچکهای آرمیچر و a را تعداد مسیرهای موازی بین جاروبکها بدانیم تعداد پیچکهای سری بین جاروبکها C / a میشود و با احتساب Z به عنوان هادیهای موجود در آرمیچر، نیروی محرکهٔ موجود در آرمیچر اینگونه محاسبه میشود:
با محاسبه ضریب سیمپیچی kw، که برای ماشینهای DC معمولاً تنها از ضریب توزیع kd تشکیل شدهاست، ولتاژ القایی آرمیچر بدینگونه خواهد بود:
گشتاور ماشین جریان مستقیم
با توجه به برابری توانهای تبدیلشده و با احتساب شرایط ایدهآل تبدیل توان، گشتاور مکانیکی ماشین این گونه محاسبه میشود: که با توجه به آن که مقادیر Z ،p و a برای ماشین ثابت است، نشان میدهد که گشتاور رابطهای مستقیم با تغیرات Ia و φ دارد.
تحریک آرمیچر
ماشین جریان مستقیم به جز دز مواردی که از مغناطیس دائم در روتور خود استفاده میکند برای تبدیل انرژی الکتریکی به مکانیکی و یا بالعکس به یک سیم پیچ تحریک که جریان مستقیم از آن عبور میکند، احتیاج دارد. به این سیمپیچ، سیمپیچ میدان گفته میشود.
تحریک جداگانه
پیچک تحریک جداگانه که از صدها دور سیم نازک تشکیل شده، به منبع خارجی یا جداگانهای از آرمیچر متصل است و ولتاژ آن منبع هیچگونه وابستگی با ولتاژ آرمیچر ندارد.
تحریک خودی
تحریک سیمپیچ میدان به وسیلهٔ آرمیچر ماشین را تحریک خودی مینامند. در این ماشین قطبهای میدان باید پسماند مغناطیسی داشته باشند تا هنگام چرخش آرمیچر ولتاژ پسماندی در جاروبکها تولید شود.
تحریک سری: سیم پیچ میدان در این نوع ماشین از سیمهای ضخیم با دور اندک (مقاومت کم) تشکیل شده که به طور سری به آرمیچر متصل شدهاست و جریان میدان سری به جریان آرمیچر بستگی دارد.
تحریک شنت: پیچک میدان از سیمهای نازک با تعداد دور زیاد تشکیل شده که به طور موازی به آرمیچر متصل شدهاست.
تحریک کمپوند: شامل هر دو سیمپیچ تحریک سری و تحریک شنت میباشد، البته در مواقعی به جای تحریک شنت از تحریک جداگانه استفاده میشود. در صورتی که شار میدان تحریک سری در جهت شار میدان تحریک شنت باشد ماشین را کمپوند اضافی و در غیر این صورت به آن ماشین کمپوند نقصانی میگویند.
راهاندازی موتور جریان مستقیم
در لحظهٔ شروع راهاندازی سرعت موتور صفر است و بنابرین نیروی ضد محرکه Ea نیز صفر میباشد، در نتیجه با اعمال ولتاژ پایانه Vt به دو سر ماشین جیان عبوری از آرمیچر از رابطهٔ در ماشینهای سری و در ماشینهای سری و کمپوند به دست میآید که در این صورت جریان ورودی زیادی وارد موتور میشود که نتایج زیر را دربر دارد:
۱- ایجاد جرقهٔ زیانآور هنگام کموتاسیون
۲- آسیبدیدن سیمپیچ آرمیچر و از بین رفتن عایق بر اثر گرمای بیش از اندازه
۳- گشتاور راهاندازی بالا و شتاب سریع که به قسمتهای متحرک ماشین آسیب میرساند.
۴- افت زیاد ولتاژ تغذیه
بنابرای برای راهاندازی مناسب ماشین لازم است که جریان راهاندازی محدود شودف که این کار با قراردادن مقاومت خروجی بر سر مدار آرمیچر انجام میشود. البته این مقاومت باید به تدریج از سر راه مدار برداشته شود، زیرا در هنگام کار عادی ماشین باعث کاخش سرعت کار ماشین و تلفات اصلفی انرژی و در نتیجه کاهش بازدهی ماشین میشود.
از انواع راهاندازهای سری میتوان راهاندازهای سهسر، راهاندازهای چهارسر و راهاندازهای اتوماتیک را نام برد.
چگونگی راهاندازی موتور
راهاندازی موتورهای جریام مستقیم با قراردادن مقاومت در مدار ارمیچر انجام میگیرد که این مقاومت خود از مقاومتهای کوچکتری که هر کدام در بخش مجزایی هستند تشکیل میشود و هر کدام از این اجزا به تدریج در هنگام راهاندازی از مدار ماشین خارج میشود تا مقاومت موجود در مدار آرمیچر تنها مقاومت آرمیچر یا مقاومت سیمپیچ سری باشد.
طراحی راهانداز
مقاومت راهانداز بین دکمههای مختلف یک راهانداز به قسمتهای نامساوی تقسیم میشود تا از ضربات غیرعادی جریان به خصوص در آخرین دکمهٔ اتصالی جلوگیری شود. در این فرایند جریان ماکزیمم آرمیچر Ia1 باید به گونهای باشد تا کموتاسیون خوب به وجود بیاید (جرقههای خطرناک هنگام کموتاسیون رخ ندهد).