پاورپوینت تعریف ، تحلیل و کاربرد داده های بزرگ (Big data) (pptx) 20 اسلاید
دسته بندی : پاورپوینت
نوع فایل : PowerPoint (.pptx) ( قابل ویرایش و آماده پرینت )
تعداد اسلاید: 20 اسلاید
قسمتی از متن PowerPoint (.pptx) :
بنام خدا
تعریف ، تحلیل و کاربردداده های بزرگ (Big data)
پيش گفتار
با ورود به عصر اطلاعات و ارتباطات و آغاز استفاده از داده ها و اطلاعات به عنوان سرمایه های اصلی در حرکت علمی ، اقتصادی ، اجتماعی و فرهنگی جوامع، برای سازمان ها ، شرکت ها و افراد مختلف در جهان اینترنت و ارتباطات در دنیا، دغدغه ای بروز پیدا کرد که از جنس همین داده هایی بود که همه روز و با سرعت وحشتناک در دنیا و در عرصه های مختلفی که فناوری اطلاعات ورود پیدا کرده بود، تولید می شود و آن اینکه چگونه این حجم بزرگ و متنوع داده ها و اطلاعات را با توجه به ساختار هایی که در فضای فناوری اطلاعات وجود دارد، می توان مدیریت، کنترل و پردازش کرد و از آن در جهت بهبود ساختارهاو سودآوری بیشتر بهره جست؟
داده های بزرگ
XB
9XB
بر اساس پیشبینیها حجم دادهها با نرخ تقریبی 9 برابر در هر 5 سال افزایش مییابد.
داده های بزرگ
ارائه شده توسط امیر صحافی sahafi@iau.ac.ir
در حال حاضر روزانه حجم بسیار عظیمی داده در حال تولید است.
بیش از 90% دادههای تولید شده و ذخیره شده در دنیای دیجیتال به نوعی ساختار یافته نيستند.
داده های بزرگ یا عظیم داده ترجمه اصطلاح Big Data می باشد که معمولا به مجموعه اي از داده ها اطلاق می شود که اندازه آنها فراتر از حدی است که با نرم افزارهای معمول بتوان آنها را در یک زمان معقول اخذ، دقیق سازی، مدیریت و پردازش کرد. مفهوم «اندازه» در داده های بزرگ بطور مستمر در حال تغییر است و به مرور بزرگتر می شود.
داده های بزرگ (Big Data) مجموعه اي از تکنیک ها و تاکتیک هایی است که نیازمند شکل جدیدی از یکپارچگی هستند . تا بتوانند ارزش های بزرگی را که در مجموعه های بزرگ، وسیع، پیچیده و متنوع داده پنهان شده اند، آشکار سازند.
دا
تعريف داده هاي بزرگ
کلیلکهای کاربران
پستهای الکترونیکی
شبکههای اجتماعی
خدمات وبی
سنسورها
پایگاههای داده
اطلاعات جغرافیایی
تصاویر، متون، ...
موارد کاربرد دادههای بزرگ
ذخيره و بازيابی کارا
جستجو
مصورسازی
انباره دادهها
تحليل گراف و شبکه
پایگاهدادههای NoSQL
پردازش توزيع شده و پردازش موازی
شبیهسازی سیستمهای پیچیده
دادهکاوی و کشف الگو
داده هاي بزرگ به قدری بزرگ و حجیم هستند که با ابزارهای مدیریتی و پایگاههاي داده سنتي و معمولي قابل مدیریت نیستند. برای ایجاد یک دید مناسب در خصوص کلان داده و اهمیت آن، جامعه ای را تصور کنید که در آن جمعیت بطور نمایی در حال افزایش است، اما خدمات و زیرساخت های عمومی آن نتواند پاسخگوی رشد جمعیت باشد و از عهده مدیریت آن برآید. چنین شرایطی در حوزه داده در حال وقوع است. بنابراین نیازمند توسعه زیرساخت های فنی برای مدیریت داده و رشد آن در بخش هایی نظیر جمع آوری، ذخیره سازی، جستجو، به اشتراک گذاری و تحلیل می باشیم. دستیابی به این توانمندی معادل است با شرایطی که مثلا بتوانیم "هنگامی که با اطلاعات بیشتری در حوزه سلامت مواجه باشیم، با بازدهی بیشتری سلامت را ارتقا دهیم"، "در شرایطی که خطرات امنیتی افزایش پیدا میکند، سطح امنیت بیشتری را فراهم کنیم"، "وقتی که با رویدادهای بیشتری از نظر آب و هوایی مواجه باشیم، توان پیش بینی دقیقتر و بهتری بدست آوریم"، "در دنیایی با خودروهای بیشتر، آمار تصادفات و حوادث را کاهش دهیم"، "تعداد تراکنش های بانکی، بیمه و مالی افزایش پیدا کند، ولی تقلب کمتری را شاهد باشیم"، "با منابع طبیعی کمتر، به انرژی بیشتر و ارزانتری دسترسی داشته باشیم" و بسیاری موارد دیگر از این قبیل که اهمیت پنهان کلان داده را نشان می دهد.
اهمیت کلان داده
مشکلات اصلي در کار با این نوع دادهها مربوط به برداشت و جمعآوری، ذخیرهسازی، جستوجو، اشتراکگذاری، تحلیل و نمایش آنها است. این مبحث، به این دلیل هر روز جذابیت و مقبولیت بیشتری پیدا ميکند که با استفاده از تحلیل حجمهاي بیشتری از دادهها، ميتوان تحلیلهاي بهتر و پيشرفتهتري را برای مقاصد مختلف ، از جمله مقاصد تجاری، پزشکی و امنیتی، انجام داد و نتایج مناسبتری را دریافتکرد. بيشتر تحلیلهای مورد نیاز در پردازش دادههاي عظیم، توسط دانشمندان در علومی مانند هواشناسی، ژنتیک، شبیهسازیهاي پیچیده فیزیک، تحقیقات زیستشناسی و محیطی، جستوجوی اینترنت، تحلیلهاي اقتصادی و مالی و تجاری مورد استفاده قرار ميگیرد. حجم دادههاي ذخیرهشده در Big Data، عموماً بهخاطر تولید و جمعآوری دادهها در مجموعه بزرگی از تجهیزات و ابزارهای مختلف مانند گوشیهاي موبایل، حسگرهای محیطی، لاگ نرمافزارهای مختلف، دوربینها، میکروفونها، دستگاههاي تشخیص RFID، شبکههاي حسگر بیسیم وغيره با سرعت خیرهکنندهاي در حال افزایش است.
چالشهاي موجود